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ANNUAL REPORT

1. INTRODUCTION

As noted In our original proposal, most of our effort has been In

hybrid analog-digital algebra and in massively parallel processing based on

hologram arrays. Both programs have exceeded our announced goals as will

become clear from what follows. In the process of those primary studies,

we developed a number of other worthwhile applications in optics as well.

Future work will aim almost exclusively at the holographic inter-

connect as this Is likely to be of most immediate value in meeting

announced SDI/ONR future program needs and we have reached a satisfactory

conclusion to the algebra study by laboratory demonstration and theoretical

Justification of the results previously obtained only by computer simulation

and Justifying arguments.

This report is comprised of overview and detail parts for each

application. The detail is relegated to appendices to make reading of the

overview more convenient. - ./,) K
1I. OVERVIEW

2.1 HOLOGRAPHIC N4 INTERCONNECT

Despite the widespread belief that N' interconnect is impossible,

it has been done for many years. Fourier optics connects each of NXN input

pixels to each of NXN output (Fourier transform) pixels. What we have

sought so far is a fixed full rank N4 Interconnect matrix. I.e. N4 fully

Independent weighted interconnection paths. When N reaches the range of

100 to 1000, this is more parallel Interconnections than electronics will

ever achieve and, therefore, establishes a unique niche for optics. The
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probable application is neural networks.

Peter Guilfoyle for Opticomp has noted that same unique niche for

optics in digital computing. The fixed interconnect holograms developed

during this reporting period do not serve that need. Accordingly, it Is a

goal for the next period to make active N' interconnects.

The highlight of this reporting period was a careful examination

of the inherent and current-technological constraints on N4 interconnection

using fixed holograms. We showed (Appendix A) that with currently avalla-

ble components we could make (256) 4 = 4 x 100 parallel interconnections.

With redesigned components, we could make (1024)' x 10"2 parallel

interconnections.

2.2 OPTICAL ALGEBRA

According to various estimates somewhere between 50% and 75% of all

CPU time in the United States is spent in solving some sort of linear

alzebra. Examples include least squares analysis, antenna beam steering,

linear regression, computational fluid dynamics, finite element analysis,

or simply N linear equations with N unknowns.

Other nonlinear algebra problems are also important. These

include image processing, linear programming, and super resolution.

To the extent that optics can solve such problems in a parallel elI

fashion, it can lead to small, fast processors which would greatly improv&igEo/

the utility of trackers, radar, sonar, etc. £eeesglg r,

WHAT IS THE CURRENT STATUS? D2IC IA-

We want to solve problems like learti

2xl+3x 2 +x 3 -4

A~mhlabtlltt 0.o
3 x + 4X 2 + x 3 ii

1D2 3 lt ad/ap



We can represent these generally as

A x a b.

In this case

A 3 1 3

4 7

x 3

The matrix A and the vector b are given. We seek the vector x.

There is a way to assign a single number (a "norm") to vectors and

matrices. We normally use the Euclidean norm, e.g.

2 2 + X+ 3
2

The word "solve" has two different meanings. We presume there is a

"true" answer x T . We can say we have an e-accurate solution if

*X - XT.IC6

A weaker sense of "solve" is

A 'XA I < e.

This is weaker In the rough sense that some good solutions in this sense

may not be close to xT" On the other hand, for many problems, this "low

residual" solution Is perfectly adequate. The Bimodal Optical Computer

(BOC) minimizes the residual.

One speaks of computational complexity in terms of how something

scales with some resource. We will speak of spatial and temporal

complexity. We will represent an NXN matrix in parallel using Na numbers.

We say the spatial complexity scales on the order of Na, written O(Nt). We

will show that the temporal complexity is 0(1), I.e., independent of N,

provided that N is small enough to be represented spatially in our processor.



The most basic concepts are over a century old (due to Lord Kelvin).

(1) We use a fast, low-accuracy processor to obtain a first guess Xo

(2) We use a slow, accurate processor to evaluate the residual

o b - A o.

If mo I < e, stop.

(3) Otherwise, use the low accuracy solver to

solve for A xo r 0.

If we could solve that problem accurately, then

would have zero residual.

Thus

A x1 - A (x0 + A x0 )

= A + A AX 0

- A x +rb-0  x

- S.

(4) Use the slow, accurate processor to evaluate

r- - - A -x

If I r, I < a, stop. Otherwise go to (3).

Some algebra problems resist accurate solution more than others. In

high school we solved N-2 problems graphically.

x2 /- Equation 1

()- - - Equation 2

2 k - X1
xi (S)



The solution Is x,(S), x2(S). Problems like this are said to be "well

conditioned" and are quite rare in real life. A more common case Is

x2  N>

/4 Eq. 1
Eq. 2

Such problems are said to be "ill conditioned." If the lines are parallel,

we say A Is "singular." Let us now make this somewhat more rigorous. Let

us define a "condition number"

x (A) - I A I " I A-1 1.

Then

6 (I ) - x (A) e (P),

where

c (I x 1) - relative error in the result and

9 (P) - relative accuracy of the processor.

If we have e (P) - 0.1 (very good optics) and x (A) = 10 (wonderfully benign

problem),

G (I x U) - 1,

i.e., 100% errors are likely.

This why we go to 32 bit floating point electronics. No one wants an answer

accurate to one part in 232 (- 4 x 109). We need that to get meaningful

answers for large x. The ultimate ill-conditioning, singularity, corre-

sponds to infinite X. Such problems are common.

In roughly 1985, Caulfield showed that this Iterative process converges

(roughly) If

e (P) < 2X(A)'



For good optics, a (P) - 0.1. Thus we need

x (A) < 5

to guarantee solution. This is silly. No real problems are so benign.

In 1987 we showed that replacing A by A' - A + E where E Is an error

matrix and

I B I / I A I I << 1,

leads to convergence for all problems independently of X. For large X. the x

which minimizes I r I may be less close to x T than would be the case for

small x. Nevertheless, we can drive I r I to zero In very few iterations

even for singular matrices. Call this Breakthrough 1.

To do the fast, low-accuracy solution 0 (1) In time; we use another

trick. We employ a parallel A x - y device.

X ----[- > - - - -> Y l

x ------- > - ------- > y

These are easy In optics. Wai Cheng and Caulfield showed that if we correct

xk with a signal proportional to bk - Yk' for all k, then this system would

'relax from any starting i to one satisfying A x = x (in the low I r I sense)

under the circumstance that A is "positive definite." To explain this, we

need one more diversion.

A vector e such that

A - X,

where A is a scalar, Is said to be an "eigenvector" of A. We usually nor-

malize e, i.e. set

I I - 1.

In that case, A Is the corresponding "eigenvalue." Let us arrange the

eigenvalues of A such that

A, < As < . . .< Ar

(r connotes "rank," a concept we choose not to define here). Interestingly,



X (A) -1 Ar II AI.
The Interesting thIng for our purposes is that the relaxation processor

converges at a rate (roughly) of

Obviously If X, > 0, It does not converge. A matrix for which X, > o, is

said to be positive definite. A matrix B 1 [4 can undergo a row-for-

column switch to form a transpose

T 13
S241"

Since the matrix elements may be complex, we can complex conjugate a matrix A

to get A*. We call

(A*)T . (AT)* AH,

the Hermitian of A. For any matrix both AA and A H A are nonnegative defi-

nite (X > 0). We noted that AHA + E and AA + E are positive definite if

i > 0.

Note, though,

A-

AHA ' 3 AH5.

Write

B = AHA

and

c - AN S

Then

B-0

and B is nonnegative definite (likewise for AAH). Applying our method to

this makes all methods converge even though

X (AHA) _ X (AAH) _ X2(A),



a normally-disastrous event. These realizations are Breakthrough 2.

Many other things done In BOCs are pretty, but those two are essence.

Of the two, Breakthrough 1 Is essential. Breakthrough 2 allows 0 (1)

solutions.
SUMARY

CONVENTIONAL B IMODAL
ALGEBRA ON OPTICAL
DIGITAL COPUTERS COMPUTERS

* SEEKS I x - xI < C SEEKS I b - A x I < C

" REQUIRES * 0 (1) TEMPORAL
ROUG LY COMPLEXITY
0 (N ) TEMPORAL
COMPLEXITY

" ALGORITHM * CONSTANT
MATCHED TO ALGORITHM
PROBLEM SUFFICES

e (I x- 1) a X (A) A -A I|-> 0
INDEPENDENTLY OF x(A)

E (I X 1) a E (P) I -A ' I < e
INDEPENDENTLY OF E (P)

The highlights of this -eriod include a laboratory demonstration

of an 0 (1) time solver of even singular matrix equations and the first vigorous

mathematical proof of how this works. Appendix B gives those details.

2.3 PATTERN RECOGNITION

In an early part of this contract we showed that rotation invari-

ant pattern recognition masks such simpler to make than those of Arsenault

and much simpler to use than those of Sweeny could be made. These were

simply annular rings of fixed amplitude and phase. In Appendix C we show

experimental work which shows that these simple filters actually outperform

their more complex competitors.



2.4 RESIDUE ARITHMETIC

In an early phase of this work we showed that 2D and 3D optical

interconnect matrices which we called optical Fredkin gates offer some

real advantages over other interconnection arrays. In Appendix D we show

that optical Fredkin gates make possible much higher speed residue arithme-

tic calculation chains than any method so far proposed.

III. CONCLUSION OF THIS PERIOD

Our original goals on optical algebra have all been met or

exceeded. The basic work, including theory and laboratory demonstration,

has been completed.

The concepts originated in the prior reporting period for improve-

ments in optical pattern recognition masks and optical Fredkin gate arrays

have been carried to the points where they show demonstrable advantages

over prior methods.

The fixed holographic N4 interconnection system establishes that

optics can make 4 x 10' weighted independent interconnections now and 10"*

eventually. These are tasks of great interest in neural networks but well

beyond current or projected electronics capability.

Future work will concentrate on applications of holographic N4

Interconnections to neural networks and to Peter Guilfoyle's digital computer.
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